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Shear alignment of rodlike nematic liquid crystals is found when the reactive parameterl.1. Measure-
ments ofl usually require complex experiments. This paper presents a method based on the nematodynamic
theory of Leslie and Ericksen that assesses flow alignment through small amplitude oscillatory flow. The
method is based on the fact that the effect ofl on the storage modulusG8 of linear viscoelasticity, when the
director is along the flow direction, is directly proportional tol−1. Thus the alignment-nonalignment transition
for increasing lambda is a reentrant viscoelastic transition: viscoelasticsl,1d→purely viscous
sl=0d→viscoelastic sl.1d that is reflected in the storage modulusG8 and in the “loss angle”d
=tan−1sG9 /G8d. The methodology is demonstrated by analyzing the Leslie-Ericksen equations for small-
amplitude oscillatory Poiseuille flow ofs4-n-octyl-48-cyanobiphenyld (8CB) using analytical and scaling meth-
ods. Since linear viscoelastic moduli are easily accessible, the proposed methodology is an additional useful
and economical tool for nematodynamicists.
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I. INTRODUCTION

Most liquid crystals exhibit polymorphism and are known
to adopt different thermodynamic phases, typically increas-
ing order as the temperature decreases. For instance, 4-n
-octyl-48-cyanobiphenyl(known as 8CB), which is a small
molar mass thermotropic nematic liquid crystal(SMTNLC),
adopts isotropic, nematic, smectic-A and solid phases as the
temperature decreases under atmospheric pressure. The
uniaxial nematic liquid crystalline phase has a long range
one-dimensional orientational order but no positional order,
whereas the smectics phase has, in addition to the orienta-
tional order, a one-dimensional positional order. The
smectic-A phase is characterized by a layered structure that
imparts a one-dimensional positional order, while the mo-
lecular orientation retains the order of the nematic liquid
crystal phase. Thus the temperature changes of nematic flows
lead to drastic changes in the rheological behavior[1,2].

A most significant temperature sensitive property is the
shear flow aligning characteristics of uniaxial rodlike nemat-
ics, which is set by the sign and magnitude of the reactive
order parameterl; for the aligning regimesl.1d, the aver-
age molecular orientation or directorn, is close to the
streamline, while for the nonalignment regimes0øl,1d,
the steady state orientation is nonplanar and nonhomoge-
neous [3]. Some SMTNLC’s such as 8CB exhibit flow-
aligning behavior if the temperature is sufficiently high but at
lower temperatures are nonaligning. At the flow aligning-
nonaligningsA-NAd transition temperatureTa-na the reactive
parameter is equal to 1. Nonalignment is also observed in
lyotropic nematic polymers[4]; at low shear rates, these ma-
terials are usually nonaligning, while at high shear rates they
are aligning.

Since the reactive parameter plays such a crucial role in
nematodynamics, its experimental measurement as well as

theoretical predictions has been the focus of many studies
[1,2,4]. Under flow aligning conditions the reactive param-
eter can be determined by optical methods. More generally, it
can be determined indirectly by viscosity measurements or
using startup flow, as is described by Larson[5] (see p. 463);
for a recent review on measurement of viscosities in nemat-
ics see Moscicki[6]. When one wishes to ascertain whether
a nematic liquid crystal is flow aligning or not, these optical
and rheological experimental methods can be substituted by
measuring the viscoelastic response to small-amplitude oscil-
latory shear flow, as shown in this paper where we propose
an alternative and simpler rheological technique based on the
linear viscoelastic theory and a standard oscillatory flow.
Small amplitude oscillatory flows(SAOF’s) are a main rheo-
logical tool used to characterize viscoelasticity[7,8] in terms
of the storageG8sv ,Td and lossG9sv ,Td moduli as a func-
tion of frequencysvd and temperaturesTd. Although simple
shear is commonly used, pressure driven flows, as consid-
ered in this paper, are also equally useful[9,10]. Previous
work on small-amplitude oscillatory shear of liquid crystals
in a parallel plate geometry has been presented for rodlike
nematic liquid crystals[11], nematic liquid crystal mixtures
[12], chiral nematic liquid crystal[13], and side-chain nem-
atic polymers[14]. In these theoretical studies the objective
was to determine the relation between viscoelastic moduli
and the material properties, such as the Frank elastic con-
stants, the Miesowicz viscosities, and the rotational viscosity.
In most of these theoretical studies it was found that mon-
odomain nematic liquid crystals are viscoelastic in a fre-
quency region surrounding the director relaxation time, and
that the response in the small frequency terminal region cor-
responds to pure viscous material. Obviously, introduction of
stable defect lattices would predict elastic response in the
terminal zone, as observed by Ramoset al. [15] and by Yada
et al. [16] for cholesteric liquid crystals. In this paper we
show that the relatively simple SAOF measurements are also
a useful tool to determine flow alignment in liquid crystals.
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(i) Characterize the temperature dependence of small am-
plitude oscillatory capillary Poiseuille flow(SAOPF) of
nematic liquid crystals exhibiting an aligning-nonaligning
transition.

(ii ) Find the signatures of the aligning-nonaligning tran-
sition on the linear viscoelasticity of nematic liquid crystals.

(iii ) Demonstrate the applicability of the small amplitude
oscillatory capillary Poiseuille flow to characterize the align-
ment behavior of nematic liquid crystals, using 8CB as a
model system.

This paper is organized as follows. Section II presents the
governing equations and auxiliary data to describe the nem-
atic liquid crystals oscillatory capillary Poiseuille flow. Sec-
tion III presents the material viscoelastic properties and func-
tions used to characterize the oscillatory Poiseuille flow of
nematic liquid crystals. Section IV presents a characteriza-
tion of the thermal dependence of the small amplitude oscil-
latory Poseuille flow of nematic liquid crystals using 8CB.
The correspondence between temperature and reactive pa-
rameter effects on the storage modulus is established. Sec-
tion V presents the signatures of flow alignment on linear
viscoleasticity. Section VI presents the conclusions.

II. THEORY AND GOVERNING EQUATIONS

The governing equations of the Ericksen and Leslie
theory consist of the linear momentum balance, director
torque balance, and constitutive equations for the stresses,
viscous and elastic torques, that take into account external
forces that distort the spatially uniform equilibrium configu-
rations of liquid crystals[1,2,17–19]. The orientation is de-
fined by the directorn that is a unit vector collinear with the
average molecular orientation direction. Uniaxial nematic
liquid crystals(NLC’s) are characterized by an average mo-
lecular orientation represented by the director vectorn, as
shown in Fig. 1. For incompressible, inertialess, isothermal
conditions the linear momentum balance is

0 = f + = · t, s1d

wheref is the body force per unit volume, andt is the total
stress tensor. The constitutive equation for the total stress
tensort is

t = − pI −
] Fd

] = n
· = nT + a1snn:Adnn + a2nN + a3Nn

+ a4A + a5nn ·A + a6A ·nn, s2d

A = s=v + = vTd/2; s3ad

N = ṅ − W ·n; s3bd

W = s=v − = vTd/2, s3cd

wherep is the pressure,I is the unit tensor,ai, i=1,2,3,4,5,6, are
the six Leslie viscosity coefficients,A is the rate of deforma-
tion tensor,N is the corotational derivative of the director,
and W is the vorticity tensor. In this theory the elastic free
energy densityFd is given by

Fd = 1
2K11s= ·nd2 + 1

2K22sn · = 3 nd2 + 1
2K33un 3 = 3 nu2,

s4d

whereK11, K22, andK33 are the splay, twist, and bend Frank
elastic constants. The director torque balance equation is
given by the sum of viscoussGvd and elasticsGed torques:

Ge + Gv = 0 s5d

Ge = − n 3 S ] Fd

] n
− =

] Fd

] s=ndTD; s6ad

Gv = − n 3 sg1N + g2A ·nd, s6bd

g1 = a3 − a2; s7ad

g2 = a6 − a5 = a3 + a2; s7bd

l = −
g2

g1
= −

a6 − a5

a3 − a2
= −

a3 + a2

a3 − a2
, s7cd

whereg1 is the rotational viscosity, andg2 is the irrotational
torque coefficient. Due to Eq.(7b) there are only five inde-
pendent Leslie coefficients. In addition, four thermodynamic
inequalities introduce further magnitude restrictions on these
coefficients[1,2,19]. The reactive parameter is involved in
nondissipative processes but it is given by a ratio of dissipa-
tive coefficients[1,2].

The inertial term in the linear momentum balance equa-
tion, Eq. (1), and the director inertia in Eq.(5) are both
neglected; the former is due to the fact that the velocity field
evolves much faster than the orientation field, so the velocity
relaxation time is irrelevant with respect to the orientation
relaxation time[2] and the latter is because it is insignificant
in comparison with the retained viscous terms.

Consider a small-amplitude oscillatory Poiseuille capil-
lary flow of a nematic liquid crystal, driven by pressure drop
oscillations of infinitesimal amplitude, as shown in Fig. 1.
The cylindrical coordinate system is also defined in Fig. 1.
The flow is described by an axisymmetric oscillatory planar
director field fnsr ,td=(sin usr ,td ,0 , cosusr ,td)g, and a
purely axial oscillatory velocity fieldfvsr ,td=(0,0,vsr ,td)g

FIG. 1. Capillary flow of a uniaxial rodlike nematic liquid crys-
tal, showing the unit normal vectorsud, the director vectorsnd, the
velocity vectorsvd, the velocity gradients=vd, the alignment angle
sud, and the cylindricalsr ,f ,zd coordinate system used to describe
a generic pointP. Under pressure drop oscillation, the director vec-
tor fluctuates aroundno=s0,0,1d.
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with finite velocity gradient at the centerline. Linearizing
around the axial direction(i.e., sinu>u , cosu>1), the di-
mensionless governing equations for the director tilt angle
usr̃ , t̃d and the axial velocityṽsr̃ , t̃d simplify to [20]

h̃splay
] u

] t̃
=

]

] r̃
S1

r̃

]

] r̃
sr̃udD +

ã3

2 h̃1

Er̃, s8ad

] ṽ

] r̃
= −

E r̃

2h̃1

+ B̃, s8bd

B̃ = −
ã3

h̃1

] u

] t̃
, s9ad

h̃splay= g̃1 −
ã3

2

h̃1

, s9bd

where h̃splay is the dimensionless splay viscosity,ãi
are the dimensionless Leslie viscositiessãi =ai / khld , khl
is the average Miesowicz viscosity[20], Esṽt̃d=sR3/K11d
3f−sdp/dzdsṽt̃dg is the ratio of viscous flow effects to long-
range elasticity effects known as the Ericksen number,r̃
=r /R is the dimensionless radius,R is the capillary radius,
t̃=K11t / sR2khld is the dimensionless time,ṽ=khlRv /K11 is
the scaled axial velocity, −dp/dz is the given small amplitude
oscillatory pressure drop in the capillary per unit length,ṽ

=vsR2khld /K11 is the dimensionless frequency, andB̃ is the
dimensionless backflow[21].

The boundary conditions for the director orientation angle
represent strong planar anchoring,us0,t̃d=us1,t̃d=0, and for
the axial velocity the no slip condition at the bounding sur-
face is used,ṽs1,t̃d=0. The director oscillates around the
velocity szd direction, and the undistorted director field is
no=s0,0,1d.

For the small amplitude oscillatory capillary Poiseuille
flow considered in this paper, the Ericksen number(i.e., di-
mensionless pressure drop) oscillates as follows:

E = E0 sin ṽt̃, s10d

whereEo is the infinitesimal dimensionless amplitude. Note
that the frequencyv is scaled with the orientation time scale
to=sR2khld /K11 and the maximum elastic storage is ex-
pected for frequencies close to the reciprocal of this value.

III. MATERIAL PROPERTIES

The viscoelastic material properties needed to character-
ize the small amplitude oscillatory Poiseuille flow of NLC’s
aligned along the capillary axis include the Miesowicz vis-
cositiesh1, the reactive parameterl, the torque coefficient
a3, and the re-orientation viscosityhsplay [2,19].

The Miesowicz shear viscosities that characterize viscous
anisotropy are measured in a steady simple shear flow be-
tween parallel plates with fixed director orientations along
three characteristic orthogonal directions:h1=sa3+a4

+a6d /2 when the director is parallel to the velocity direction,

h2=s−a2+a4+a5d /2 when it is parallel to the velocity gra-
dient, andh3=a4/2 when it is parallel to the vorticity axis;
the measured Miesowicz shear viscosities for aligning nem-
atics usually follow the ordering

h2 . h3 . h1. s11d

In the present flowh1 is the relevant steady shear viscosity,
but the average of the three Miesowicz viscosities are used
for scaling proposes.

The shear flow alignment of rodlike NLC’s is governed
by the magnitude of the reactive parameterl sTd. According
to Eq. (7c), l= fsa2,a3d, and for rods the inequalitya2,0
holds at all temperatures, buta3 may change sign. For rod-
like molecules, whenl.1 sa3,0d the material is known as
shear flow aligning, and the director aligns within the shear
plane, at an angleuL, known as the flow-alignment Leslie
angle, given by[19]

uL =
1

2
cos−1S1

l
D . s12d

In a steady simple shear flow when the director is aligned
alonguL the viscous torques are zero. The Leslie angle can
be measured using optical methods and the reactive param-
eter can be evaluated directly using Eq.(12); however, when
l,1 sa3.0d, nonaligning behavior arises and Eq.(12) does
not hold.

When the director angle is in the plane of shear and close
to zero the viscous torqueGf

v around the azimuthal direction
is

Gf
v = − a3uġ = −

g1

2
s1 − lduġ = a2

s1 − ld
s1 + ld

uġ, s13d

whereġ is the characteristic shear rate, and where we used
the definitions Eqs.(7a) and (7c). In SAOPF the viscous
torque is balanced by the elastic torque, and thus measuring
the linear viscoelastic storage and loss moduli yieldsa3.
Since for SMRNLC’s the Leslie coefficienta2 is always
negative, the sign ofa3 determines whetherl is greater or
less than 1. Thus flow alignment can be determined using
simple and purely mechanical measurements. At theA-NA
transition, the viscous torque vanishes:Gf

v =0.
The director reorientation is a viscoelastic process, and

the re-orientation viscosities associated with splay, twist, and
bend deformations are defined by[2,21]

htwist = g1; s14ad

hsplay= g1 −
a3

2

h1
= g1S1 −

g1

4h1
s1 − ld2D; s14bd

hbend= g1 −
a2

2

h2
= g1S1 −

g1

4h2
s1 + ld2D . s14cd

These viscosities are given by the rotational viscositysg1d
decreased by a factor introduced by the backflow effect.
Backflow is re-orientation driven flow and is essentially the
reverse effect to flow-induced orientation. The general ex-
pression for the re-orientation viscosities can be re-written as
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ha=g1−zi
2/hi, wherehi denotes the corresponding Miesow-

icz viscosity andzi the corresponding torque coefficient.
Since twist is the only mode that creates no backflow then
htwist=g1. For a bend distortion the backflow is normal ton
and hence the torque coefficient isa2, and the Miesowicz
viscosity ish2. On the other hand, for a splay distortion the
backflow is parallel ton and hence the torque coefficient is
a3, and the Miesowicz viscosity ish1. In the present flow the
relevant re-orientation viscosity ishsplay=g1−a3

2/h1. For a
material like 8CB, the splay viscosity, twist and bend vis-
cosities are identical at theA-NA transition.

In this paper we use the viscoelastic material parameters
of 8CB, shown in Table I[22,23]. The temperature depen-
dence of rheology of 8CB under transient and steady simple
shear flows was presented by Han and Rey[3]. At a tempera-
ture T=Ta-na=38.36 °C the reactive parameter isl=1 and
a3=0. As mentioned previously in this section for tempera-
tures aboveTa-na, l.1 and a3,0 and flow alignment is

observed, while for temperatures belowTa-na, l,1 and
a3.0 and nonalignment is observed. In this paper we
discuss results in terms ofl, instead of a3, without
loss of generality. The relation betweena3 andl is [2]: a3
=−a2s1−ld / s1+ld. Using Table I it can be seen that
dl /da3,0 at all temperatures. Since for any functionf,
df/da3=sdf/dldsdl /da3d, it follows that sgnsdf/da3d=
−sgnsdf/dld for all temperatures, and no ambiguities will
arise.

IV. RESULTS AND DISCUSSION

The semicoupled set of equations, Eqs.(8a) and (8b), is
solved by separation of variables. Note that the velocity par-
tial time derivative is missing in Eq.(8b), and hence the
velocity time dependence is set by the director dynamics.
Symbolic and numerical calculations presented in the next

TABLE I. Viscosity coefficients to4-n-octyl-48-cyanobiphenyl(8CB) [22,23].

Set 1 2 3 4a 5 6 7

T (°C) 34.00 35.00 37.00 38.36 39.00 40.00 40.50

Leslie viscosities coefficients(Pa s)

a1 0.6510 0.1342 0.0382 0.0196 0.0138 0.0078 0.0060

a2 20.0707 20.0696 20.0587 20.0500 20.0458 20.0371 20.0305

a3 0.0404 0.0140 0.0031 0.0000 20.0011 20.0034 20.0055

a4 0.0582 0.0560 0.0520 0.0497 0.0488 0.0478 0.0474

a5 0.0644 0.0529 0.0472 0.0415 0.0388 0.0339 0.0315

a6 0.0341 20.0026 20.0084 20.0085 20.0082 20.0067 20.0046

Reactive parameter

l 0.2725 0.6639 0.9013 1.0000 1.0512 1.2042 1.4436

Dimensionless Leslie viscosities coefficientssãi =ai / khldb

ã1 10.166 2.6671 0.8932 0.5067 0.3735 0.2291 0.1855

ã2 21.1044 21.3832 21.3725 21.2925 21.2395 21.0896 21.9428

ã3 0.6309 0.2782 0.07249 0.0000 20.02978 20.09985 20.1700

ã4 0.9089 1.1130 1.2159 1.2848 1.3207 1.4038 1.4652

ã5 1.0057 1.0513 1.1037 1.0728 1.0501 0.9956 0.9737

ã6 0.5325 20.05167 20.1964 20.2197 20.2219 20.1968 20.1422

Dimensionless rotational viscosity and irrotational torque coefficient

g̃1 1.7350 1.6615 1.4450 1.2925 1.2097 0.9897 0.7728

g̃2 20.4732 21.1050 21.3001 21.2925 21.2693 21.1894 21.1128

Dimensionless Miesowicz viscosities

h̃1 1.0362 0.6698 0.5460 0.5325 0.5345 0.5536 0.5765

h̃2 1.5094 1.7738 1.8461 1.8251 1.8051 1.7445 1.6909

h̃3 0.4544 0.5565 0.6080 0.6424 0.6604 0.7019 0.7326

Dimensionless re-orientation viscosities

h̃twist 1.7350 1.6615 1.4450 1.2925 1.2097 0.9897 0.7728

h̃splay 1.3509 1.5459 1.4354 1.2925 1.2081 0.9717 0.7226

h̃bend 1.4713 1.6178 1.4422 1.2925 1.2092 0.9840 0.7557

aThe Leslie viscosities coefficients and the temperature in this case are interpolated values.
bThe average Miesowicz viscosity is defined as:khl=sh1+h2+h3d /3.
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sections were performed using the softwaremaple release 7
by Waterloo Maple Inc andmatlabversion 6.5 by MathWorks
Inc.

A. Orientation field

Imposing pressure oscillations on the NLC’s will produce
spatially nonhomogeneous director oscillations. Since NLC’s
are viscoelastic the director oscillations will not be in phase
with the applied pressure drop. Thus the total director angle

usr̃ , t̃ ,ṽd is given by the sum of the following in-phase and
out-phase components:

usr̃, t̃,ṽd = uisr̃,ṽd sinsṽt̃d + uosr̃,ṽd cossṽt̃d. s15d

Note that in phase means oscillation in phase with the im-
posed Ericksen number[see Eq.(10)], and hence the in-
phase temporal variation is sinsṽt̃d, while the out phase is
cossṽt̃d. Using Eq.(8a) and separation of variables, the in-
phaseuisr̃ ,ṽd and out-of-phaseuosr̃ ,ṽd director components
are found to be

ui =
ã3E0

2h̃1
Sber1Îṽh̃splayr̃ bei1Îṽh̃splay− bei1Îṽh̃splayr̃ ber1Îṽh̃splay

ṽh̃splaysber1
2Îṽh̃splay+ bei1

2Îṽh̃splayd
D , s16d

uo =
ã3E0

2h̃1
Sber1Îṽh̃splayr̃ ber1Îṽh̃splay+ bei1Îṽh̃splayr̃ bei1Îṽh̃splay

ṽh̃splaysber1
2Îṽh̃splay+ bei1

2Îṽh̃splayd
−

r̃

ṽh̃splay
D , s17d

where beinsxd and bernsxd are the Kelvin functions of ordern,
[24]:

bernsxd = o
k=0

` cosS3p

4
n +

p

2
kD

k ! G sk + 1 +nd S x

2
D2k+n

, s18d

beinsxd = o
k=0

` sinS3p

4
n +

p

2
kD

k ! G sk + 1 +nd S x

2
D2k+n

. s19d

The amplitude of the director fieldu is a function of
ã3/ h̃splayh̃1. The symmetry and scaling of the amplitudes are

uisr̃,ṽ,ã3d = − uisr̃,ṽ,− ã3d, uosr̃,ṽ,ã3d = − uosr̃,ṽ,− ã3d,

s20d

uisr̃,ṽ,ã3d = ã3f isr̃,ṽd, uosr̃,ṽ,ã3d = ã3fosr̃,ṽd. s21d

Vanishing amplitudes are a signature of the aligment-
nonalignment transition. The amplitude sign reversal indi-
cates characteristic rheological responses. The only viscosi-
ties in the problem are the Miesowicz viscosityh̃1 associated
with the axially oriented director field[i.e. n=s0,0,1d], and
the transient splay viscosityh̃splay associated with oscilla-
tions the director around the axial “z” axis. The frequency
dependence ofu is weighted by the splay viscosityh̃splay

because the net flow effect on the director is renormalized by
backflow.

Figure 2(a) shows the in phase component of the orienta-
tion sui /Eod as a function of the dimensionless radial distance
sr̃d for dimensionless frequenciessṽd: 0.1, 1, 10, 100, 1000,
and 10 000,T=34 °C, and the reactive parameter 0.2725, in
the nonaligning regime. Figure 2(b) shows the corresponding
out-phase component of the orientationsuo/Eod as a function
of the dimensionless radial distancesr̃d. The in-phase com-
ponent decreases monotonically with frequency, while the
out-of-phase component exhibits resonance behavior that
signals maximum elastic storage. The behavior in the align-
ing regime is obtained by reversing the signs of the ampli-
tudes.

B. Velocity field

Since the director fieldn is coupled to the velocity fieldv,
imposing an oscillatory pressure drop to the NLC will pro-
duce a velocity field with in-phase and out-of-phase compo-
nents. Thus the total dimensionless velocity fieldṽsr̃ , t̃ ,ṽd is
given by the sum of the following in-phase and out-phase
components:

ṽsr̃, t̃,ṽd = ṽisr̃,ṽd sinsṽt̃d + ṽosr̃,ṽd cossṽt̃d. s22d

Using Eq. (8b) and separation of variables, the in-phase
ṽisr̃ ,ṽd and out-of-phaseṽosr̃ ,ṽd director components are
found to be
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ṽi=s1 − r̃2d
E0

4h̃1
S1 +

ã3
2

h̃1h̃splay
D+

ã3
2E0

2h̃1
2h̃splay

Fber1Îṽh̃splaysber0Îṽh̃splayr̃ − bei0Îṽh̃splayr̃ − ber0Îṽh̃splay+ bei0Îṽh̃splayd
Î2ṽh̃splaysber1

2Îṽh̃splay+ bei1
2Îṽh̃splayd

G
+

ã3
2E0

2h̃1
2h̃splay

Fbei1Îṽh̃splaysbei0Îṽh̃splayr̃ + ber0Îṽh̃splayr̃ − bei0Îṽh̃splay− ber0Îṽh̃splayd
Î2ṽh̃splaysber1

2Îṽh̃splay+ bei1
2Îṽh̃splayd

G , s23d

ṽo=−
ã3

2E0

2h̃1
2h̃splay

Fbei1Îṽh̃splaysber0Îṽh̃splayr̃ − bei0Îṽh̃splayr̃ − ber0Îṽh̃splay+ bei0Îṽh̃splayd
Î2ṽh̃splaysber1

2Îṽh̃splay+ bei1
2Îṽh̃splayd

G
+

ã3
2E0

2h̃1
2h̃splay

Fber1Îṽh̃splaysbei0Îṽh̃splayr̃ + ber0Îṽh̃splayr̃ − bei0Îṽh̃splay− ber0Îṽh̃splayd
Î2ṽh̃splaysber1

2Îṽh̃splay+ bei1
2Îṽh̃splayd

G . s24d

The in-phase componentṽi has a frequency-dependent term
and a frequency-independent Newtonian parabolic compo-
nent that is associated with the pure viscous contribution.
The in-phase componentṽi is associated with the elastic con-
tribution. The amplitude of the velocity fieldṽ is a function
of

R=
− ã3

2

h̃1
2h̃splay

=
sh̃splay− g̃1d

h̃splay

1

h̃1

. s25d

The transient viscosity information is contained in the di-
mensionless ratiosh̃splay− g̃1d / h̃splay between net viscosity
due to rotation and transient displacement viscosity. As usual
h̃1 is in the denominator and contains the steady “Newton-
ian” viscosity factor. The frequency dependence ofṽ is
weighted by the splay viscosityh̃splay because the net flow
effect is renormalized by backflow. The symmetry and scal-
ing of the amplitudes are

visr̃,ṽ,ã3d = visr̃,ṽ,− ã3d, vosr̃,ṽ,ã3d = vosr̃,ṽ,− ã3d,

s26d

visr̃,ṽ,ã3d = sã3d2gisr̃,ṽd, vosr̃,ṽ,ã3d = sã3d2gosr̃,ṽd.

s27d

Vanishing amplitudes are a signature of the alignment-
nonalignment transition. The amplitudes are even functions
of ã3.

Figure 3(a) shows the in-phase dimensionless velocity
componentsṽi /Eod as a function of the dimensionless radial
distancesr̃d for dimensionless frequenciessṽd: 0.1, 1, 10,
100, 1000, and 10 000,T=34 °C, andl=0.2725, corre-
sponding to the nonalignment regime. Figure 3(b) shows the
corresponding out-phase dimensionless velocity component
sṽo/Eod as a function of the dimensionless radial distancesr̃d.
As the frequency increases the profile of the in-phase com-
ponent asymptotes the Newtonian parabola, while the out-
phase component exhibits resonance. Identical behavior is
observed in the aligning regime.

The out-phase velocity amplitude and the in-phase direc-
tor amplitude exhibits boundary layer behavior that signals

elastic storage. In steady simple shear flow the dimensionless

director boundary layer thicknessj̃ scales asj̃~1/ÎE [25].
Likewise in SAOPF the boundary layer thickness scales as

j̃~1/Îṽ. By analyzing the dimensionless boundary layer
thickness of the dimensionless out-phase velocity component
as a function of the dimensionless frequency we find that the
power law scaling holds for aligning and nonaligning re-
gimes; at T=Ta-na, Newtonian viscous flow arises and
ṽo;0.

C. Viscoelastic material functions

The linear viscoelastic material functions are given by the

complex modulusG̃* sṽd=G̃8sṽd+iG9sṽd, whereG̃8 is the

dimensionless storage modulus andG̃9 is the dimensionless
loss modulus. The dimensionless complex viscosity is de-

fined by: h̃* sṽd=h̃8sṽd− ih̃9sṽd=G̃* sṽd / ṽ, where h̃8 and
h̃9 are the dissipative and elastic components. For Poiseuille

flow the dimensionless flow ratesQ̃d and the dimensionless
apparent viscositysh̃d are given by the following relations
[26]:

Q̃ = 2pE
0

1

ṽsr̃dr̃dr̃, s28ad

h̃ =
pE

8Q̃
. s28bd

Specifying these expressions for SAOPF using the dimen-
sionless oscillatory flow rate given by
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Q̃ * sṽ, t̃d = Q̃isṽd sin ṽt̃ + Q̃osṽd cosṽt̃, s29d

we obtain the following expressions for viscoleastic moduli:

G̃8 =
pE0

8

Q̃o

Q̃i
2 + Q̃o

2
ṽ, s30ad

G̃9 =
pE0

8

Q̃i

Q̃i
2 + Q̃o

2
ṽ. s30bd

Using Eqs.(23), (24), and(28) the in-phasesQ̃id and out-of-

phasesQ̃od flow-rate components are found to be

Q̃i=
pE0

8h̃1
S1 +

ã3
2

h̃1h̃splay
D+

pE0

8h̃1

8ã3
2

h̃1h̃splay
3ber1Îṽh̃splayS 2

Î2ṽh̃splay

bei1Îṽh̃splay+
1

2
bei0Îṽh̃splay−

1

2
ber0Îṽh̃splayD

Î2ṽh̃splaysber1
2Îṽh̃splay+ bei1

2Îṽh̃splayd
4

+
pE0

8h̃1

8ã3
2

h̃1h̃splay
3bei1Îṽh̃splayS−

2

Î2ṽh̃splay

ber1Îṽh̃splay−
1

2
bei0Îṽh̃splay−

1

2
ber0Îṽh̃splayD

Î2ṽh̃splaysber1
2Îṽh̃splay+ bei1

2Îṽh̃splayd
4 , s31d

Q̃0=
pE0

8h̃1

8ã3
2

h̃1h̃splay
3bei1Îṽh̃splayS−

2

Î2ṽh̃splay

bei1Îṽh̃splay−
1

2
bei0Îṽh̃splay+

1

2
ber0Îṽh̃splayD

Î2ṽh̃splaysber1
2Îṽh̃splay+ bei1

2Îṽh̃splayd
4

+
pE0

8h̃1

8ã3
2

h̃1h̃splay
3ber1Îṽh̃splayS−

2

Î2ṽh̃splay

ber1Îṽh̃splay−
1

2
bei0Îṽh̃splay−

1

2
ber0Îṽh̃splayD

Î2ṽh̃splaysber1
2Îṽh̃splay+ bei1

2Îṽh̃splayd
4 . s32d

The frequency dependence of the viscoelastic moduli for
ã3Þ0 is as follows. The loss modulus is always greater than
the storage modulus, the low frequency(terminal) regime is
classic of a viscous fluid, and the characteristic slopes are

asṽ → 0, G̃8 , ṽ2, G̃9 , ṽ;

asṽ → ` , G̃8 , ṽ1/2, G̃9 , ṽ. s33d

The phase lag or “loss angle”fd=tan−1sG̃9 /G̃8dg is charac-
teristic of a viscoelastic material with a single relaxation
time; in addition, the NLC is viscoelasticsd,p /2d at inter-
mediate frequencies and purely viscoussd=p /2d at small
and large frequencies.

Next we discuss the correspondence betweenG̃8

=G̃8sT,ṽd , G̃9=G̃9sT,ṽd and G̃8=G̃8sl ,ṽd , G̃9=G̃9sl ,ṽd.
In other words, we wish to use the Leslie-Ericksen model to
establish whether experimental measurements performed at
different temperatures are good indicators of the magnitude
of l. Without loss of generality we discuss the results in
terms of a normalized temperatureT*:

T * = lsT1d + S T − T1

T2 − T1
DflsT2d − lsT1dg. s34d

We have checked that this scaled temperatureT* retains all
the signatures found with the original temperatureT scale. In

particular, sgnsdG̃8 /dTd=sgnsdG̃8 /dT* d.

Figure 4 shows the dimensionless loss modulussG̃9d and

the dimensionless storage modulussG̃8d as a function of di-
mensionless frequencysṽd for Ts°Cd: 34, 35, 37, 38.36, 39,
40, and 40.5. By analyzing the dimensionless loss modulus
as a function of the reactive parametersld and scaled tem-
peraturesT* d for given values of dimensionless frequency
we find that this modulus is essentially independent of tem-
perature and ofl:

l , 1:
dG̃9sṽd

dl
! 1; s35ad

l . 1:
dG̃9sṽd

dl
> 0, s35bd

T , 37 ° C:
dG̃9sṽd

dT
! 1; s35cd

T . 37 ° C:
dG̃9sṽd

dT
> 0. s35dd

This follows from the fact that theT andl dependence ofG̃9
is essentially throughh̃1, and according to Table I, for
T,37 °C, h̃1 is a very weak function ofT; for T.37 °C,
h̃1 is essentially constant which explains the constant behav-
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ior mentioned above. Equations(35a)–(35d) establish a one-

to-one correspondence betweenG̃9=G̃9sT,ṽd and G̃9

=G̃9sl ,ṽd.
By analyzing the dimensionless storage modulus as a

function of the reactive parametersld and scaled temperature
sT* d for given values of dimensionless frequency we find
that this modulus is dependent of temperature and ofl as
follows:

l , 1,
dG̃8sṽd

dl
, 0 s36ad

l = 1,
dG̃8sṽd

dl
= 0 s36bd

l . 1,
dG̃8sṽd

dl
. 0 s36cd

T , 38.36 ° C,
dG̃8sṽd

dT
, 0 s36dd

T , 38.36 ° C,
dG̃8sṽd

dT
= 0, G̃8sṽd = 0 s36ed

T . 38.36 ° C,
dG̃8sṽd

dT
. 0. s36fd

Equations(36a)–(36f) establish the one-to-one correspon-

dence betweenG̃8=G̃8sT,ṽd and G̃8=G̃8sl ,ṽd. From Eqs.
(30a), (31), and(32) it follows that the correspondence prin-
ciple between theT andl effects on the storage modulus is
the factorability of thel effects:

FIG. 2. Orientation components as a function of the dimension-
less radial distancesr̃d for dimensionless frequenciessṽd: 0.1, 1, 10,
100, 1000, and 10 000, temperature 34 °C and reactive parameter
0.2725:(a) in-phase director componentsui /Eod; (b) out-phase di-
rector componentsuo/Eod.

FIG. 3. Dimensionless velocity components as a function of the
dimensionless radial distancesr̃d for dimensionless frequenciessṽd:
0.1, 1, 10, 100, 1000, and 10 000, temperature 34 °C and reactive
parameter 0.2725:(a) in-phase velocity componentsṽi /Eod; (b) out-
phase velocity componentsṽo/Eod.
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G̃8sT,ṽd = gsSlsTd − 1

lsTd + 1
D fs„ṽ,MisTd…, s37d

whereMisTd are viscoelastic parameters. According to Eqs.
(30a), (31) and (32) the storage modulus is proportional to
ã3

2 [and hencesl−1d2/ sl+1d2], hence explaining the curva-
ture of the storage modulus as a function of the reactive
parametersld and scaled temperaturesT* d for given values
of dimensionless frequency. Using Eq.(30a) it is found that

in the terminal zone, the storage modulusG̃8 is given by

lim
ṽ→o

G̃8 = lim
ṽ→o

pE0

8

ṽQ̃o

sQ̃i
2 + Q̃o

2d
~ S1 − l

1 + l
D2

ṽ2 s38d

and hence the curvature in the terminal zone is an increasing

function of ṽ2:]2G̃8 /]l2= fsṽ2d, and for ṽ2!1 the curva-
ture is small. On the other hand, at large frequencies

lim
ṽ→`

G̃8 = lim
ṽ→`

pE0

8

ṽQ̃o

sQ̃i
2 + Q̃o

2d
~ S1 − l

1 + l
D2

Îṽ s39d

and hence forÎṽ@1 the curvature is large.

Figure 5 shows the loss anglefd=tan−1sG̃9 /G̃8dg as a
function of the dimensionless frequencysṽd for Ts°Cd: 34,
35, 37, 38.36, 39, 40, and 40.5. At the alignment-
nonalignment transitionsTa-na=38.36 °Cd the storage modu-
lus vanishes,d=p /2, and the material is Newtonian. The
material behavior of 8CB in this flow configurationfn0

=s0,0,1dg exhibits viscoelastic re-entrant behavior:

viscoleasticsT , 38.36 ° Cd ⇒ purely viscoussT

= 38.36 ° Cd ⇒ viscoleasticsT . 38.36 ° Cd.

The minimum value of the loss angle, minsdd=dr, occurs at
the resonance frequencyṽ=ṽr and both are functions ofl
and temperature. The correspondence principle betweenT
andl follows from Eq.(37).

V. ASSESSING FLOW ALIGNMENT THROUGH LINEAR
VISCOELASTICITY

Assessing flow alignment through linear viscoelasticity is
based on the temperature dependence of the reactive param-
eter and the factorability principle in nematodynamics. For
nematics, such as 8CB, the temperature dependence ofl in
conjunction with factorability in the storage modulus gives

l = lsTd, lsTa-nad = 1,
dl

dT
. 1, s40d

G̃8sT,ṽd = gsSlsTd − 1

lsTd + 1
D fs„ṽ,MisTd…;

gss0d = 0; sgnS ] G̃8

] T
D = sgnS ] G̃8

] l
D , s41d

G̃9sT,ṽd = f1„ṽ,lsTd,MisTd…;
] G̃9

] T
! 1;

] G̃9

] l
! 1; sgnS ] G̃9

] T
D = sgnS ] G̃9

] l
D , s42d

FIG. 4. Dimensionless loss modulussG̃9d and dimensionless

storage modulussG̃8d as a function of dimensionless frequencysṽd
for temperatures 34, 35, 37, 38.36, 39, 40, and 40.5 °C. The result
of G8 for (4) is not shown in the plot because its value is zero for all
frequencies.

FIG. 5. Loss anglefd=tan−1sG̃9 /G̃8dg as a function of the di-
mensionless frequencysṽd for temperatures 34, 35, 37, 38.36, 39,
40, and 40.5 °C. The resonant behavior is classic of nematic liquid
crystals[11–14].
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dsT,ṽd = tan−15 f1ssṽ,MisTdd

gsSlsTd − 1

lsTd + 1
D6;

dsTa-na,ṽd = tan−1H f1s„ṽ,MisTd…
gss0d J =

p

2
s43d

and hence performing experiments at several temperatures
gives unequivocal information on whetherl is greater or less
than 1.

Since the alignment-nonalignment transition is reflected
in the viscoelasticity as a re-entrant viscoelastic transition,
we propose to capture information on flow alignment
through

(i) G̃8= fsG̃9d,
(ii ) dr =drsTd,
(iii ) ṽr =ṽrsTd.
Figure 6 shows the dimensionless loss modulussG̃9d as a

function of the dimensionless storage modulussG̃8d for
Ts°Cd: 34, 35, 37, 38.36, 39, 40, and 40.5. The figure shows
the following signatures:

(i) nonaligning regime,T,Ta-na:

]

] TS ] G̃9

] G̃8
D . 0,

(ii ) Newtonian transition,T=Ta-na:

S ] G̃9

] G̃8
D→ ` ,

(iii ) aligning regime,T.Ta-na:

]

] TS ] G̃9

] G̃8
D , 0.

Measuring the sign of]G̃9 /]G̃8sTd establishes whether the
material is of the aligning type or not.

Figure 7 shows the resonance loss anglesdrd as a function
of the reactive parametersld, and of the scaled temperature
sT* d, in the alignment and nonalignment regions. Both
curves lack mirror symmetry around theA-NA transition.
The figures show the following signatures:

(iv) nonaligning regime,T,Ta-na:

] dr

] T
. 0,

(v) Newtonian transition,T=Ta-na:

dr = p/2,

(vi) aligning regime,T.Ta-na:

] dr

] T
, 0.

MeasuringdrsTd establishes whether the material is of the
aligning type or not.

Figure 8 shows the resonance dimensionless frequency
sṽrd as a function of the reactive parametersld, and scaled
temperaturesT* d. The curves show the following signatures:

(i) nonaligning regime,T,Ta-na:

FIG. 6. Dimensionless loss modulussG̃9d as a function of the

dimensionless storage modulussG̃8d for temperatures 34, 35, 37,
38.36, 39, 40, and 40.5 °C. Note that the slope diverges as the
A-NA transition is approached.

FIG. 7. Resonance loss anglesdrd as a function of the reactive
parametersld and scaled temperaturesT* d, for the alignment(A)
and nonalignment(NA) regions. At theA-NA transition the reso-
nance loss angle is a maximum. The slope of theddr /dT indicates
whethersl.1d or not.
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asT ↑ ,
] ṽr

] T
< 0 → 0 ,

] ṽr

] T
, «,

(ii ) aligning regime,T.Ta-na:

] ṽr

] T
. «.

IncreasingT in the nonaligning region results in a change in
the slope of]ṽr /]T. IncreasingT in the aligning region in-
creases the positive slope of]ṽr /]T. Hence measuringṽrsTd
establishes whether the material is of the aligning type or
not.

VI. CONCLUSIONS

The Leslie-Ericksen equations for small-amplitude oscil-
latory Poiseuille flow of 8CBs4-n-octyl-48-cyanobiphenyld
were solved using analytical and scaling methods. This SM-
RNLC is flow aligning forT.38.36 °C and nonaligning for
T,38.36 °C. The storageG8 and lossG9 modulus are those
of a viscoelastic material with a single relaxation time, such
that the loss angled exhibits a resonance peak at a frequency
vr. The dependence of linear viscoelastic material functions
on temperature and reactive parameter were established. It
was found that the aligning-nonaligning transition is a re-
entrant viscoelastic transition and that when the director is
aligned along the flow direction the behavior is purely New-
tonian whenl=1.

It is shown that since the major temperature effects on the
storage modulusG8 are through a factorable function of the
reactive parameter: G8sT,v ,Md=gflsTdgfsv ,Md, flow
alignment in nematic liquid crystals can be determined using
the temperature dependence of the linear viscoleastic re-
sponse to small-amplitude oscillations. In particular measur-

ing ]G̃9 /]G̃8sTd, drsTd , vrsTd provides unequivocal evi-
dence on whether the nematic liquid crystal is of the aligning
or nonaligning type. Since linear viscoelasticity is a simple
and easily accessible measurement, the proposed methodol-
ogy is a helpful and economical tool for nematodynamicists.
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